skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Zhun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large language models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional performance in various natural language processing tasks and have shown the ability to solve certain reasoning problems. However, their reasoning capabilities are limited and relatively shallow, despite the application of various prompting techniques. In contrast, formal logic is adept at handling complex reasoning, but translating natural language descriptions into formal logic is a challenging task that non-experts struggle with. This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming. Specifically, we employ an LLM to transform natural language descriptions of logic puzzles into answer set programs. We carefully design prompts for an LLM to convert natural language descriptions into answer set programs in a step by step manner. Surprisingly, with just a few in-context learning examples, LLMs can generate reasonably complex answer set programs. The majority of errors made are relatively simple and can be easily corrected by humans, thus enabling LLMs to effectively assist in the creation of answer set programs. 
    more » « less
  2. Injecting discrete logical constraints into neural network learning is one of the main challenges in neuro-symbolic AI. We find that a straight-through-estimator, a method introduced to train binary neural networks, could effectively be applied to incorporate logical constraints into neural network learning. More specifically, we design a systematic way to represent discrete logical constraints as a loss function; minimizing this loss using gradient descent via a straight-through-estimator updates the neural network's weights in the direction that the binarized outputs satisfy the logical constraints. The experimental results show that by leveraging GPUs and batch training, this method scales significantly better than existing neuro-symbolic methods that require heavy symbolic computation for computing gradients. Also, we demonstrate that our method applies to different types of neural networks, such as MLP, CNN, and GNN, making them learn with no or fewer labeled data by learning directly from known constraints. 
    more » « less
  3. The integration of low-level perception with high-level reasoning is one of the oldest problems in Artificial Intelligence. Recently, several proposals were made to implement the reasoning process in complex neural network architectures. While these works aim at extending neural networks with the capability of reasoning, a natural question that we consider is: can we extend answer set programs with neural networks to allow complex and high-level reasoning on neural network outputs? As a preliminary result, we propose NeurASP – a simple extension of answer set programs by embracing neural networks where neural network outputs are treated as probability distributions over atomic facts in answer set programs. We show that NeurASP can not only improve the perception accuracy of a pre-trained neural network, but also help to train a neural network better by giving restrictions through logic rules. However, training with NeurASP would take much more time than pure neural network training due to the internal use of a symbolic reasoning engine. For future work, we plan to investigate the potential ways to solve the scalability issue of NeurASP. One potential way is to embed logic programs directly in neural networks. On this route, we plan to first design a SAT solver using neural networks, then extend such a solver to allow logic programs. 
    more » « less
  4. Ricca, Francesco et (Ed.)
    The integration of low-level perception with high-level reasoning is one of the oldest problems in Artificial Intelligence. Today, the topic is revisited with the recent rise of deep neural networks. However, it is still not clear how complex and high-level reasoning, such as default reasoning, ontology reasoning, and causal reasoning, can be successfully computed by these approaches. The latter subject has been well-studied in the area of knowledge representation (KR), but many KR formalisms, including answer set programming (ASP), are logic-oriented and do not incorporate high-dimensional feature space as in deep learning, which limits the applicability of KR in many practical applications. 
    more » « less
  5. We present NeurASP, a simple extension of answer set programs by embracing neural networks. By treating the neural network output as the probability distribution over atomic facts in answer set programs, NeurASP provides a simple and effective way to integrate sub-symbolic and symbolic computation. We demonstrate how NeurASP can make use of a pre-trained neural network in symbolic computation and how it can improve the neural network's perception result by applying symbolic reasoning in answer set programming. Also, NeurASP can make use of ASP rules to train a neural network better so that a neural network not only learns from implicit correlations from the data but also from the explicit complex semantic constraints expressed by the rules. 
    more » « less
  6. Logic Programs with Ordered Disjunction (LPOD) is an extension of standard answer set programs to handle preference using the high-level construct of ordered disjunction whereas asprin is a recently proposed, general, flexible, and extensible framework that provides low-level constructs for representing preference in answer set programming. We present an encoding of LPOD in the language of asprin and the implementation LPOD2ASPRIN based on the encoding. Unlike the known method that applies only to a fragment of LPOD via the translation to Answer Set Optimization (ASO), our translation is general, direct, and simpler. It also leads to more efficient computation of LPOD using asprin. 
    more » « less